The GridPACKTM Toolkit for Developing Power Grid
Simulations on High Performance Computing Platforms

Bruce Palmer Pacific

William Perkins Pacific

Kevin Glass Pacific

Northwest National Laboratory Northwest National Laboratory Northwest National Laboratory

Richland, WA 99352
bruce.palmer@pnnl.gov

Yousu Chen Pacific

Seattle, WA
yousu.chen@pnnl.gov

ABSTRACT

This paper describes the GridPACK™ framework, which is
designed to help power grid engineers develop modeling soft-
ware capable of running on high performance computers.
The framework contains modules for setting up distributed
power grid networks, assigning buses and branches with ar-
bitrary behaviors to the network, creating distributed matri-
ces and vectors, using parallel linear and non-linear solvers
to solve algebraic equations, and mapping functionality to
create matrices and vectors based on properties of the net-
work. In addition, the framework contains additional func-
tionality to support IO and to manage errors. The goal of
GridPACK™is to provide developers with a comprehensive
set of modules that can substantially reduce the complexity
of writing software for parallel computers while still provid-
ing efficient and scalable software solutions.

Keywords
Electric Power Grid, High Performance Computing, Soft-
ware Frameworks

1. INTRODUCTION

The electric power grid has been characterized as being the
largest machine in the world, but in spite of this it is still
being modeled primarily on workstations running serial pro-
grams. Much smaller systems (e.g. the internal combustion
engine[4]), on the other hand, are being modeled in ways
that can fully exhaust the resources of the largest available
computing systems. Power grid engineers have spent enor-
mous effort and ingenuity reducing simulations of the grid
to manageable sizes, but these reductions have resulted in
approximations and loss of detail which may be hiding or ob-
scuring important features and behaviors of the power net-
work. Furthermore, as the power grid becomes more compli-
cated, due to more varied and unpredictable energy sources

(©2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contrac-
tor or affiliate of the United States Government. As such, the United
States Government retains a nonexclusive, royalty-free right to pub-
lish or reproduce this article, or to allow others to do so, for Govern-
ment purposes only. HiPCNA-PG ’13, November 17-21 2013, Den-
ver, CO, USA Copyright 2013 ACM 978-1-4053-2510-3/13/11.$15.00.
http://dx.doi.org/10.1145/2536780.2536782

Richland, WA 99352
william.perkins@pnnl.gov

Shuangshuang Jin Pacific
Northwest National Laboratory Northwest National Laboratory
Seattle, WA
shuangshuang.jin@pnnl.gov

Richland, WA 99352
kevin.glass@pnnl.gov

David Callahan Northwest
Institute for Advanced
Computing Seattle, WA
david.callahan@pnnl.gov

such as wind and solar energy and the influx of more in-
formation from data sources such as smart meters, the task
of modeling even small networks becomes more challenging.
The power grid is clearly an appealing target for high per-
formance computing (HPC) but there are few tools available
to assist power grid engineers interested in writing code to
run on HPC platforms.

This paper will describe the GridPACKT™ framework for de-
veloping parallel power grid simulations that run on HPC
platforms with high levels of performance and scalability.
Frameworks have appeared in other contexts and been used
to reduce the programming burden on domain scientists
by making complex but commonly used motifs available
through libraries or other mechanisms. Both the Commu-
nity Climate System Model[6] and Weather Research and
Forecasting Model[13] are framework-based approaches to
developing climate and weather models. The Cactus frame-
work is designed to support grid-based applications and is
widely used in the numerical general relativity community[8].
The Common Component Architecture[2] is a framework de-
signed to support modularization of codes and has been used
successfully in some groundwater applications[14]. Other
examples of frameworks or modular approaches to code de-
velopment can be found, particularly among large software
projects with a broad developer base.

The GridPACK™4toolkit is designed to allow power sys-
tem engineers to focus on developing working applications
from their models without getting bogged down in the de-
tails of decomposing the computation across multiple proces-
sors, managing data transfers between processors, working
out index transformations between power grid networks and
the matrices generated by different power applications, and
managing input and output. GridPACKT™encapsulates as
much of the book-keeping required to set up HPC applica-
tions as possible in high-level programming abstractions that
allow developers to concentrate on the physics and mathe-
matics of their problems. The following will summarize the
overall design of the GridPACK™ framework and then de-
scribe the major modules that have been developed so far.

2. POWER GRID REQUIREMENTS

The initial focus of the GridPACK ™ design analysis was to
target four power grid applications and to identify common
features that span multiple applications. This analysis in-
cluded a breakdown of the application into phases and iden-
tification within each phase of the functionality required to
complete them. The four applications originally targeted
within this project were power flow simulations[9], contin-
gency analysis[5], state estimation[l] and dynamic simula-
tion[11]. This analysis identified three major categories of
functionality that required support from the framework and
a number of smaller categories that were extremely useful.
The categories are:

e Distributed graphs representing the network topology
of the power grid and flexibility in specifying the be-
havior of objects located on the network. The power
grid network is represented as a graph with edges re-
ferred to a branches and nodes referred to as buses.

e Distributed matrices and vectors and parallel solvers
and preconditioners. The solution algorithms for power
grid problems are usually expressed in terms of linear
or non-linear algebraic equations.

e Mapping objects located on the network to distributed
matrices and vectors. For example, the diagonal el-
ements of the admittance matrix are associated with
buses and the off-diagonal elements are associated with
branches. The mapping between the network and ma-
trix elements can be automated to a considerable ex-
tent.

These three areas encompose two major classes of data ob-
jects, distributed networks and distributed matrices and vec-
tors. One of the goals of GridPACK ™ was to create support
for these data objects and transformations between the two.

The network topology is the starting point for any power
grid analysis. The topology defines the initial network model
and is the connection point between the physical problem
definition in terms of buses and branches and the solution
method, which is usually expressed in terms of matrices and
vectors. Because the network is expected to be a large data
object, it is undesirable to replicate it across processors.
Instead, the network is divided across processors to both
minimize the memory utilization on each process and to
minimize communication volume between processors. The
GridPACK™framework needs to support the distribution
of the network along with the exchange of data that is re-
quired between processors. Data exchanges are required be-
cause parts of the network located on one processor need
to access the buses and branches they are attached to that
reside on other processors. This is particularly true for prob-
lems that rely on an iterative loop for their solution where
network exchanges need to occur at each iteration.

The network also serves as a container for the objects that
define the behavior of buses and branches in the actual power
grid model. These objects represent the physical system
being modeled as well as the analyses that are being per-
formed on it. All the things that might be present on a bus
or branch, such as generators, loads, grounds, transformers,

sensors, etc. need to be contained within the bus and branch
objects. Bus and branch behaviors frequently depend on the
objects immediately attached to them so that buses depend
on the branches that are attached to them (and possibly
on the buses attached to them via a branch) and branches
depend on the buses attached at either end of the branch.
Providing easy access to these attached objects is another
function of the network module.

Basic algebraic objects, such as matrices and vectors, are a
core part of the solution algorithms required by power grid
analyses. These also tend to be large data objects that must
be distributed across processors. Furthermore, the solution
algorithms built around these data objects are generally the
most time consuming part of program execution, so it is nec-
essary to ensure that the solutions are fully parallel as well.
Most solution algorithms are dominated by sparse matrices
but a few, such as Kalman filter analyses[12], require dense
matrices. Vectors are typically dense. There exists a rich set
of libraries for constructing distributed matrices and vectors
and these also contain preconditioner and solver capabilities.
GridPACK ™ leverages this work heavily by creating wrap-
pers around these libraries to create matrices and vectors
that can be used in solution algorithms. Wrapping these li-
braries instead of using them directly has the advantage that
creating these algebraic objects can be simplified somewhat
for power grid applications but more importantly, it allows
developers to investigate new solver and algebraic libraries
seamlessly, without disrupting other parts of the code. The
current GridPACK™implementation is built on top of the
PETSc[3] libraries but other possibilities include Hypre[7]
and Trilinos[10]. All these libraries support distributed ma-
trices and vectors, basic algebraic operations such matrix-
vector multiply, inner products, etc. and a variety of solution
methods for linear and non-linear equations.

Finally, there is a need to support generation of matrices
from objects in the network and the ability to push data
from solution vectors back down into network objects. This
is one of the most complicated and error-prone parts of writ-
ing code, especially for parallel platforms. Much of the work
involved in setting up matrices can be eliminated by hav-
ing users implement a few functions that provide individual
matrix elements contributed by each bus or branch. The
mapping function can then assemble these elements into a
complete matrix for the entire system. The fact that devel-
opers can focus on writing code for individual matrix ele-
ments reduces the amount of programming required and fits
in more intuitively with the physical models. The compli-
cated index calculations required to evaluate global offsets
that are needed to set up a distributed matrix can be left to
the framework.

3. GRIDPACK™

This section will describe the core components identified so
far and the functionality they will support. It will start off
with two components that directly support the major under-
lying data objects, the power grid network and its associated
data fields and matrices and vectors. Additional components
are then built on top of these (or at least in conjunction
with them). These include a partitioner to divide the net-
work among processors, network components that describe
the physics of the different network models and/or analyses,

factories that initialize network components and manage in-
teractions between the components and the network itself,
mappers that convert the current state of the network com-
ponents into matrices and vectors, solvers that supply the
preconditioner and solver functionality necessary to imple-
ment solution algorithms and input and output modules that
allow developers to import and export data using standard
formats. GridPACK™is currently implemented as a C++
library and is designed to be run on Linux platforms (the
standard OS for most HPC architectures). The library cur-
rently has no interface for Windows-based computers, but
we believe it will be possible to develop such a capability in
the future if there is a demand for it.

Many of these components rely heavily on external libraries
to minimize framework development time and to capital-
ize on the considerable investment in time and expertise in-
vested in them. By wrapping these libraries in interfaces
geared towards power grid applications they can be made
easier to use by power grid engineers. The interfaces also
make it possible to swap out libraries in the future for new or
improved implementations of specific functionality without
requiring application developers to rewrite their codes. This
can significantly reduce the cost of introducing new tech-
nology into the framework and allows application specific or
vendor-proprietary algorithms to be incorporated easily into
the framework. Core framework components are described
below.

3.1 Network Module

The network module is a templated class that can be created
using any type of model for the buses and branches. The
network class has four major functions

e The network is a container for the network topology.
The connectivity of the network is maintained by the
network object and can be made available through re-
quests to the network. The network also maintains the
“ghost” status of locally held buses and branches and
determines whether a bus or branch is owned by a par-
ticular processor or represents a ghost image of a bus
or branch owned by a neighboring processor.

e The network topology can then be decorated with bus
and branch objects that reflect the properties of the
particular physical system under investigation. These
bus and branch objects are written by the applica-
tion developer and model the physical system and the
analyses that need to be performed on it. Different
applications will use different bus and branch imple-
mentations.

e The network module is responsible for implementing
update operations that can be used to fill in the value
of ghost cell fields with current data from other proces-
sors. The updates of ghost buses and ghost branches
have been split into separate operations to give users
flexibility in optimizing performance by minimizing the
amount of data that needs to be communicated in the
code.

e The partitioner is responsible for distributing the net-
work among processors in such a way that each proces-
sor has roughly equal numbers of buses and branches

and so that buses and branches on the same proces-
sor are mostly connected and connections to buses
and branches on other processors are minimized. This
layout will optimize the communication efficiency be-
tween processors by minimizing the number of proces-
sors that need to communicate with each other and
reducing the amount of data that must be exchanged
between processors.

The combination of the functionality described above will
make it possible to build arbitrary network-based data struc-
tures and to use them in parallel applications. The complex-
ity of working with the distributed network is comparable
to the complexity of working with a serial application.

3.2 Math Module

The math module is used to create distributed matrices and
vectors and also implements linear and non-linear solvers
and their preconditioners. The math module is designed to
be a thin wrapper on top of existing parallel math libraries.
It is currently implemented using PETSc but could be imple-
mented using other libraries. Other implementations would

not require changes to other parts of the GridPACK ™ framework

or to existing applications.

The math module consist of routines for generating dis-
tributed matrices and vectors as well as routines for using
them in linear and non-linear solvers. Creating a matrix or
vector generally consists of 1) creating the matrix or vec-
tor object 2) adding elements to the objects using global
indices and 3) assembling the object into a state where it
can be used in solvers. This operation allows the libraries to
set up internal data structures that handle distribution of
the matrix or vector and control communication in parallel
algebraic operations. Once matrices and vectors have been
created, they can be treated as opaque objects and manip-
ulated using a high level API that would be comparable to
writing Matlab code.

In addition to allowing user to create algebraic objects, the
module supports basic algebraic operations such as matrix-
vector multiplies, scaling of matrices and vectors, evaluation
of norms, etc. The library can also be used to create linear
and non-linear solvers. Linear solvers are can be used di-
rectly on matrices and vectors but non-linear solvers require
the creation of specific functions that are used inside the
non-linear solver to update the solutions at each solver cy-
cle.

3.3 Network Components

Network component is a generic term for objects associated
with buses and branches. These objects determine the be-
havior of the system and the type of analyses being done.
Branch components can represent physical objects such as
transmission lines and transformers while bus components
can model loads, generators, or something else. Both kinds
of components could represent measurements (e.g. for a
state estimation analysis).

Network components cover a broad range of behaviors and
there is little that can be said about them outside the con-
text of a specific problem. Each component inherits from a

| MatVeclnterface |

| BaseComponent |
AV
| BaseBusComponent | |BaseBranchComponent|
| AppBusComponent | |AppBranchComponent|

Figure 1: An inheritance diagram for the network
component classes. The base class for all network
components is the MatVecInterface which defines
functions that can be overwritten by network com-
ponents to produce matrices and vectors used in
computations. The BaseComponent, BaseBusCom-
ponent and BaseBranchComponent classes define
generic functions that are useful in calculations.
These include routines for obtaining neighboring
buses or branches.

matrix-vector interface, which is used by the mapper module
(described below) to generate matrices and vectors. In ad-
dition, buses inherit from a base bus interface and branches
inherit from a base branch interface. These base interfaces
provide mechanisms for accessing the neighbors of a bus or
branch. They also allow developers to specify what data
is transferred in ghost exchanges. They do not define any
physical properties of the bus or branch, it is up to applica-
tion developers to do this.

The matrix-vector interface contains a set of virtual func-
tions that must be overwritten by the application and pro-
vide the matrix and vector elements that define the physical
model and the analyses performed on it. The type of ma-
trix or vector produced by a network can be changed by
controlling the state of the network components. The base
bus components implements functions that can return a list
of all branches that the bus is connected to and the base
branch component can return the buses at either end of the
branch. This functionality is passed to the application by
appropriately subclassing the base classes.

The class structure for the network components is shown in
Figure (1). Of these base classes, the MatVecInterface is
the most important. It answers the question what block of
data is contributed by a bus or branch to a matrix and what
the dimensions of the block are. For example, for powerflow
simulations it is necessary to construct an entity known as
the Y-matrix. If a real-valued formulation, the grid com-
ponents on buses contribute a 2x2 block to the diagonal of
the Y-matrix. Similarly, the grid components on branches
contribute a 2x2 block to the off-diagonal elements. If the

Y-matrix is expressed as a complex matrix, then the blocks
are of size 1x1. The location of these blocks in the matrix is
determined by the location of the corresponding buses and
branches in the network, but the indexing calculations re-
quired to determine this location can be made completely
transparent to the user via the mapper module.

Because the matrix-vector interface focuses on small blocks,
it is relatively easy for power grid engineers to write the cor-
responding methods. The full matrices and vectors can then
be generated from the network using simple calls to the map-
per interface. For example, the equation for contributions
from transmission elements on branches to the off-diagonal
elements of the Y-matrix is[9]

-1
BD D rmrr— (1)
= T'mnk +]$mnk

va'ranchmn

where 7, n 1s the resistance for the kth transmission element
going from bus m to bus n, Tmnk is the reactance of the kth
transmission element from bus m to bus n and j = /—1.
The sum is over the transmission elements connecting m and
n. Information on all transmission elements between m and
n is already located on the mn branch so this calculation is
purely local.

The contributions from buses and branches to the diagonal
elements of the Y-matrix can be written as

Y;)usmm - Sbusm,m - Z Ybranchmn (2)
n#m

Equation (2) is evaluated by looping over branches that are
connected to bus m. The quantities Spys,,,, represent other
contributions to Ypys,,,, from sources other than transmis-
sion lines. The evaluation of these contributions is straight-
forward since the BaseBusComponent and BaseBranchCom-
ponent classes already contain methods for getting a list
of all branches attached to a bus or the buses attached to
either end of a branch. The bus contribution calculation
consists of 1) getting a list of the branch objects connected
to the bus 2) looping over these objects and obtaining the
value of Yoranch,,, from them and 3) accumulating these
into Yous,,.., -

The matrix-vector interface contains a number of functions
that are important for building matrices. These are divided
into two sets. The first reports back on the size of the block
that the bus or branch contributes to the matrix, the second
provides the actual values in the block. To construct the Y-
matrix as a real, 2N X 2N matrix, where N is the number of
buses in the network, the size method for the diagonal ele-
ments (buses) and off-diagonal elements (branches) returns
the value 2 for both dimensions of the block and the values
method returns the block

b

where a and b the real and imaginary parts of either Yyus,,,,
(for buses) or Yoranch,,, (for branches). If the appropriate
functions in the matrix-vector interface have been imple-
mented in the bus and branch components, then matrices
and vectors will automatically be built by the mapper com-
ponent. This eliminates much of the complicated detail re-
quired to evaluate global indices when setting up a matrix.

3.4 Mapper Module

The mapper module contains a number of objects that can
be used to generate matrices and vectors from network com-
ponents. The mappers scan the matrix-vector interface func-
tions in the network components and use the information
provided by them to create the corresponding matrices. The
size information and the location of the component in the
network allows the mapper to calculate the location of the el-
ement(s) in the matrix and the remaining functions provide
the actual matrix values. The matrix mapper is illustrated
in Figure 2 for a small network. Figure 2(a) shows a hy-
pothetical network for which some buses and branches do
not contribute to the matrix as seen if Figure 2(b). In ad-
dition, not all buses and branches contribute the same size
blocks. The mapping of the individual contributions from
the network in Figure 2(b) to initial matrix locations based
on network location is shown in Figure 2(c). This is fol-
lowed by the elimination of gaps in the matrix due to rows
and columns with no values in Figure 2(d).

The vector mappers are similar to the matrix mappers and
are used to construct a vector from functions that are defined
on the buses. The vector mapper can also be used to push
values from a vector back onto the buses. This is important
in iterative or non-linear solver where the matrices need to
be updated based on the solutions of the previous iteration.
The solutions are first pushed back down on to the buses
in the network. The network then exchanges data between
processers and based on the new values in the buses, new
matrices and vectors are produced for the next iteration.

The matrix and vector mappers can eliminate an enormous
amount of complex programming required to set up dis-
tributed matrices and indices. In combination with the net-
work and math modules, it also allows developers to write
code that is fully distributed at all stages of the calculation.
This will minimize memory utilization as well as communi-
cation and redundant computation. All these are important
in developing computationally efficient and scalable code.

3.5 Other Framework Components

The network, math, and mapper modules are the most im-
portant parts of the GridPACK ™ framework, but other mod-
ules have been added that may simplify many aspects of
code development. A brief description of these components
follows.

3.5.1 Factories

The factory component is an application specific compo-
nent that is subclassed from a factory base class. Factories
manage interactions between the network and the network
components. For example, it is desirable that each network
component has methods that allow it to return a list of the
network components to which it is directly attached. How-
ever, topology information is stored in the network. The
base factory class has a method that works in conjunction
with methods in the base component class to set up internal
data structures so that this capabiltity is available in each
network component. Other functionality of this type could
be added based on the needs of individual applications. A
common type of function is something that runs over all
bus and branch components in the network and triggers a
method in each bus and/or branch.

(b)

No matrix
contribution

No matrix

contribution
No matrix 10/
contribution

Figure 2: A schematic diagram of the matrix map
function. The bus numbers in (a) and (b) map to
approximate column locations in (c). (a) a small
network (b) matrix blocks associated with branches
and buses. Note that not all blocks are the same size
and not all buses and branches contribute (c) initial
construction of matrix based on network indices (d)
final matrix after eliminating gaps

3.5.2 Import Module

The import module is designed to read an external network
file and set up the network topology. It also associates all
parameters assigned to each bus and each branch to the bus
or branch as a collection of key-value pairs. These pairs are
then used to instantiate the corresponding network compo-
nents. The import module does not partition the network,
it is only responsible for reading in the network and dis-
tributing the different network elements in a way that guar-
antees that not too much data ends up on any one processor.
Currently, GridPACK supports the PSS/E PTI version 23
format but import modules supporting other data formats
could be written and easily substituted for the PTI format.
We are currently investigating other formats for inclusion
into GridPACK™.

3.5.3 Serial 10 Module

The serial IO module can be used to write data to standard
output. It is used primarily for exporting parameters asso-
ciated with buses and branches in a list format to either the
screen or to a file. The user is required to write a function
that formats the output from a bus or branch into a single
character string and the serial IO module makes sure that
the data is moved to the head processor and written out in
a consistent order.

3.5.4 Configuration Module

The configuration module is designed to provide a central
mechanism for directing module specific information to each
of the components making up a given application. This in-
formation is typically associated with a standard input file
and contains information such as the convergence threshold
or the maximum numbers of iterations that could be used in
the solution. The configuration module reads the external
file and broadcasts the information to all processors. It can
subsequently be queried anywhere in the program to extract
parameters that might be needed by a particular module.
The configure module supports input files using and XML
syntax. This choice was made to enable interoperability
between applications written using GridPACK™and other
workflow and data management tools being developed for
power grid modeling.

4. APPLICATION EXAMPLE

A brief sketch of an actual powerflow example is shown
in Figure 3. Namespaces and other details that would be
present in an actual application have been suppressed for
brevity and clarity. Line 1 defines an application-specific
network type based on the component classes PFBus and
PFBranch. Most of the work in actually creating an appli-
cation is focused on writing these classes. The PFNetwork
object is instantiated using a default communicator and then
used to create an import module object in line 6. This object
imports an network configuration file (“network.raw” in this
example) and then partitions the resulting network among
the available processors in line 8. The code then creates an
application factory and uses it to instantiate the network
components in line 11. It also sets up various indices and
buffers used by the mapper routines and ghost exchanges in
lines 12 and 13. The network exchanges between buses is
initialized in line 15. Each of the buses and branches then
performs a calculation to evaluate the components of the

1 typdef BaseNetwork<PFBus,PFBranch> PFNetwork;
2 Communicator world;

3 shared_ptr<PFNetwork>

4 network (new PFNetwork(world));

5

6 PTI23_parser<PFNetwork> parser(network) ;
7 parser.parse("network.raw");

8 network->partition();

9

10 PFFactory factory(network) ;

11 factory.load();

12 factory.setComponents() ;

13 factory.setExchange();

14

15 network->initBusUpdate();

16 factory.setYBus();

17 factory.setMode(YBus);

18 FullMatrixMap<PFNetwork> mMap (network) ;
19 shared_ptr<Matrix> Y = mMap.mapToMatrix();
20

21 factory.setSBus();

22 factory.setMode(RHS) ;

23 BusVectorMap<PFNetwork> vMap(network) ;
24 shared_ptr<Vector> PQ = vMap.mapToVector();
25

26 factory.setMode(Jacobian) ;

27 FullMatrixMap<PFNetwork> jMap(network) ;
28 shared_ptr<Matrix> J = jMap.mapToMatrix();
29 shared_ptr<Vector> X(PQ->clone());

30

31 double tolerance = 1.0e-6;

32 int max_iteration = 100;

33 ComplexType tol = 2.0*tolerance;

34 LinearSolver isolver(*J);

35

36 int iter = O;

37

38 // Solve matrix equation J*X = PQ

39 isolver.solve(*PQ, *X);
40 tol = X->norm2();
41
42 while (real(tol) > tolerance &&
43 iter < max_iteration) {
44 vMap .mapToBus (X) ;
45 network->updateBuses() ;
46 factory.setMode (RHS) ;
47 vMap .mapToVector (PQ) ;
48 factory.setMode (Jacobian) ;
49 jMap.mapToMatrix(J);

50 LinearSolver solver (*J);

51 solver.solve (*PQ, *X);

52 tol = X->norm2();

53 iter++;

54 }

Figure 3: . Top-level driver for a powerflow appli-

cation using GridPACK™,

Y-matrix. This calculation is triggered by the application-
specific setYBus factory method (line 16). Line 17 sets an
internal mode in the buses an branches so that they will
produce the Y-matrix. The Y-matrix itself is produced by
creating a mapper and then using this to generate the matrix
(line 18 and 19). The right-hand-side vector for the power-
flow equations and the Jacobian are produced in a similar
way in lines 21-29.

The next block of code sets up a Newton-Raphson iteration
loop. The tolerance and maximum numbers of iterations
have been hard-wired in this example but they would be
made configurable in an actual application. The code cre-
ates a LinearSolver component, based on the current Jaco-
bian, in line 34 and then uses this to get the initial solution
to the powerflow equations. The norm of this solution (line
39) is evaluated and if it turns out to be less than the tol-
erance then the calculation is over (line 41). Otherwise, the
solution is pushed back onto the buses (line 43) and the
ghost buses are refreshed with current values of the solution
(line 44). This data is then used to recalculate the Jacobian
and right-hand-side vectors (lines 45-48) and resolved. This
process is repeated until the solution converges or the max-
imum number of iterations is reached. Although the actual
working code contains more options for configuring the cal-
culation at runtime, as well as additional options for output,
the overall complexity of the driver is about the same as this
code fragment.

As mentioned above, most of the code development focuses
on creating the bus and branch components, which are re-
sponsible for implementing the equations representing the
matrix elements in the algebraic equations used to solve the
power grid problem. However, because these equations are
almost always represented as simple loops over neighbors,
they are relatively simple to write. The complexity associ-
ated with writing communication routines and performing
the index transformations that determine where data comes
from and where it goes have been completely abstracted by
the framework components.

5. SUMMARY

A schematic of the entire GridPACK ™ framework is shown
Figure 4. The application-independent modules (in green)
have been separated from the application specific modules
(in blue). The goal has been to hide as much of the complex-
ity of parallel programming as possible into generic func-
tionality that could be used by multiple applications. A
particular focus has been the routines that require extensive
communication and/or algorithmic complexity. Successfully
encapsulating these into standalone modules that can be
used across applications could dramatically reduce the level
of effort required to write power grid applications.

As shown in the figure, application developers will need to
focus on writing three sets of modules. The network com-
ponents contain the descriptions of the physics and/or mea-
surements that are associated with buses and branches in
the power grid network. The network factory is a mod-
ule that initializes the grid components on the network after
the network is originally created by the import module. The
factory can also be used to implement other functions that
manage interactions between the network and the network

GridPACK™ Software Stack
Applications

Network

Components i

+ Neighbor Lists Application Factory Solver
¢ Matrix Elements

GridPACK™ Framework

ImportModule Export Module
+ PTIFormats !\/I?}é_l}flgdule Mapper « Serial IO
+ Dictionary € * PTIFormats

Matri Network Module Utilities
atrix and Configure
Ve + Ghost « Emors
‘ector Module Module s e
7 e 2 sl + Partitioning * Profiling
e Power Grid Core
e Network and Data
Fields Objects
Figure 4: A schematic diagram of the

GridPACK™ framework software layers. Yel-
low is used for core distributed data objects,
green for framework components and blue for
application-specific components.

components. The solver is built out of the math module and
encapsulates the solution algorithm for the application. Sev-
eral parallel applications are currently under development
using the GridPACK™and are expected to be completed
shortly.

6. ACKNOWLEDGMENTS

Funding for this work was provided by the U.S. Depart-
ment of Energy’s Office of Electricity through its Advanced
Grid Modeling Program. Additional funding was provided
by the Future Power Grid Initiative at Pacific Northwest
National Laboratory through the Laboratory Directed Re-
search and Development program. Pacific Northwest Na-
tional Laboratory is located in Richland, WA and is op-
erated by Battelle Memorial Institute under contract DE-
ACO05-76RLO1830 with the U.S. Department of Energy. The
authors would like to acknowledge insightful discussions with
Gilbert Bindewald at the Department of Energy and Dick
Russell, Jeff Dagle, and David Chassin at Pacific Northwest
National Laboratory.

7. ADDITIONAL AUTHORS
Mark Rice

Pacific Northwest National Laboratory
Richland, WA 99352
mark.rice@pnnl.gov

Ruisheng Diao

Pacific Northwest National Laboratory
Richland, WA 99352
ruisheng.diao@pnnl.gov

Stephen Elbert

Pacific Northwest National Laboratory
Richland, WA 99352
stephen.elbert@pnnl.gov

Zhenyu (Henry) Huang

Pacific Northwest National Laboratory
Richland, WA 99352
zhenyu.huang@pnnl.gov

8.
(1]

2]

[10]

[11]

REFERENCES

A. Abur and A. Gémez-Expésito. Power System State
Estimation: Theory and Implementation. Marcel
Dekker, Inc., New York, 2004.

B. Allan, R. Armstrong, D. Bernholdt, K. Chiu,

T. Dahlgren, K. Damevski, W. Elwasif, T. Epperly,
D. Katz, J. Kohl, M. Krishnan, J. Larson, S. Lefantzi,
M. Lewis, A. Malony, L. McInnes, J. Nieplocha,

B. Norris, S. Parker, J. Ray, S. Shende, T. Windus,
and S. Zhou. A component architecture for high
performance scientific computing. Int. J. High Perf.
Comput. Applications, 20(2):163-202, Summer 2006.
S. Balay, J. Brown, K. Buschelman, W. Gropp,

D. Kaushik, M. Knepley, L. Mclnnes, B. Smith, and
H. Zhang. PETSc Web page, 2013.
http://www.mcl.anl.gov/petsc.

J. Chen. http://exactcodesign.org.

Y. Chen, Z. Huang, and D. Chavarria-Miranda.
Performance evaluation of counter-based dynamic load
balancing schemes for massive contingency analysis
with different computing environments. In IEEE
Power and Energy Society General Meeting PESGM.
IEEE, June 2003.

A. Craig, M. Vertenstein, and R. Jacob. A new flexible
coupler for earth system modeling developed for
CCSM4 and CESM1. Int. J. High Perf. Comput.
Applications, 26(1):5-16, February 2012.

R. Falgout, J. Jones, and U. Yang. Conceptual
interfaces in hypre. Fut. Gen. Comput. Systems — Int.
J. Grid Comput. Theor. Meth. Applications,
22(1-2):239-251, January 2006. Special issue on PDE
software. Also available as LLNL technical report
UCRL-JC-148957.

T. Goodale, G. Allen, G. Lanfermann, J. Massé,

T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Lecture Notes in Computer Science, pages 197-227.
5th International Conference on High Performance
Computing for Computational Science (VECPAR
2002), June 2003.

J. Grainger and W. Stevenson. Power System
Analysis. McGraw-Hill, Inc., New York, 1994.

M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu,
T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,

E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro,
J. Willenbring, A. Williams, and K. Stanley. An
overview of the trilinos project. ACM Trans. Math.
Softw., 31(3):397-423, September 2005.

Z. Huang, S. Jin, and R. Diao. Predictive dynamic
simulation for large-scale power systems through
high-performance computing. In The 2nd
International Workshop on High Performance
Computing, Networking and Analytics for the Power
Grid. International Conference High Performance
Computing Networking Storage and Analysis, SC12,
November 2012.

(12]

(13]

(14]

Y. Li, Z. Huang, N. Zhou, B. Lee, R. Diao, and P. Du.
Application of ensemble Kalman filter in power system
state tracking and sensitivity analysis. In Proceedings
of the 2012 IEEE Power and Energy Society
Transmission and Distribution Conference and
Ezxposition. IEEE, May 2012.

J. Michalakes, J. Dudhia, D. Gill, T. Henderson,

J. Klemp, W. Skamarock, and W. Wang. The weather
research and forecasting model: Software architecture
and performance. In Use of High Performance
Computing in Meteorology, pages 156-168. 11th
WOrkshop on the Use of High Performance
Computing in Meteorology, October 2005.

B. Palmer, V. Gurumoorthi, A. Tartakovsky, and

T. Scheibe. A component-based framework for
smoothed particle hydrodynamics simulations of
reactive fluid flow in porous media. Int. J. High Perf.
Comput. Applications, 24(2):228-239, Summer 2010.

